Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.

نویسنده

  • Derek R Laver
چکیده

1. In muscle, intracellular calcium concentration, hence skeletal muscle force and cardiac output, is regulated by uptake and release of calcium from the sarcoplasmic reticulum. The ryanodine receptor (RyR) forms the calcium release channel in the sarcoplasmic reticulum. 2. The free [Ca2+] in the sarcoplasmic reticulum regulates the excitability of this store by stimulating the Ca2+ release channels in its membrane. This process involves Ca2+-sensing mechanisms on both the luminal and cytoplasmic sides of the RyR. In the cardiac RyR, these have been shown to be a luminal Ca2+ activation site (L-site; 60 micromol/L affinity), a cytoplasmic activation site (A-site; 0.9 micromol/L affinity) and a cytoplasmic Ca2+ inactivation site (I2-site; 1.2 micromol/L affinity). 3. Cardiac RyR activation by luminal Ca2+ occurs by a multistep process dubbed 'luminal-triggered Ca2+ feed-through'. Binding of Ca2+ to the L-site initiates brief (1 msec) openings at a rate of up to 10/s. Once the pore is open, luminal Ca2+ has access to the A-site (producing up to 30-fold prolongation of openings) and to the I2-site (causing inactivation at high levels of Ca2+ feed-through). 4. The present paper reviews the evidence for the principal aspects of the 'luminal-triggered Ca2+ feed-through' model, the properties of the various Ca2+-dependent gating mechanisms and their likely role in controlling sarcoplasmic reticulum (SR) Ca2+ release in cardiac muscle. 5. The model makes the following important predictions: (i) there will be a close link between luminal and cytoplasmic regulation of RyRs and any cofactor that prolongs channel openings triggered by cytoplasmic Ca2+ will also promote RyR activation by luminal Ca2+; (ii) luminal Mg2+ (1 mmol/L) is essential for the control of SR excitability in cardiac muscle by luminal Ca2+; and (iii) the different RyR isoforms in skeletal and cardiac muscle will be controlled quite differently by the luminal milieu. For example, Mg2+ in the SR lumen (approximately 1 mmol/L) can strongly inhibit RyR2 by competing with Ca2+ for the L-site, whereas RyR1 is not affected by luminal Mg2+.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes.

Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivation of the SR Ca2+ release channels/ryanodine receptors (RyRs). To ...

متن کامل

Luminal Ca2+ Regulation of Single Cardiac Ryanodine Receptors: Insights Provided by Calsequestrin and its Mutants

The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that ...

متن کامل

Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity

Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequence...

متن کامل

Flubendiamide, a novel Ca2+ channel modulator, reveals evidence for functional cooperation between Ca2+ pumps and Ca2+ release.

Flubendiamide, developed by Nihon Nohyaku Co., Ltd. (Tokyo, Japan), is a novel activator of ryanodine-sensitive calcium release channels (ryanodine receptors; RyRs), and is known to stabilize insect RyRs in an open state in a species-specific manner and to desensitize the calcium dependence of channel activity. In this study, using flubendiamide as an experimental tool, we examined an impact of...

متن کامل

Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+.

The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical and experimental pharmacology & physiology

دوره 34 9  شماره 

صفحات  -

تاریخ انتشار 2007